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Abstract

The distribution of energy among the subsystems of a system can be found in terms of the modes of the
system. If there are enough modes in the frequency band of interest then the system can be described by an
SEA model. However, in general this is a “‘quasi-SEA” model, which involves both direct and indirect
coupling loss factors, whose values depend on the modal overlap. This paper explores the conditions under
which the indirect coupling loss factors are zero, so that the system is described by a “proper-SEA” model.
It also investigates the dependence of the direct and indirect coupling loss factors on the modal properties
of the system and on the modal overlap. In summary, the indirect coupling loss factors are zero, so that a
proper-SEA model can be formed, either if all the system modes are local or in the weak coupling regime as
the modal overlap becomes large. It is seen that in the low modal overlap limit the coupling loss factors are
proportional to the damping loss factor and equipartition of energy only occurs if all modes are global. For
higher modal overlap the SEA parameters depend on the detailed statistics of the modes and the situation is
complicated. However, if all the modes are local the indirect coupling loss factors are all zero. In the high
modal overlap limit the coupling loss factors asymptote to constants, with indirect coupling loss factors
becoming zero. This behaviour occurs because of mode shape correlation at the boundary between two
directly connected subsystems.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Energy-based modelling approaches are often used to describe the higher frequency vibrational
behaviour of complex systems in some average, statistical or approximate way. The most
important of these methods is statistical energy analysis (SEA) [1,2]. The system is divided into
subsystems which are excited by random, stationary, distributed forces. The response is described
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by the time-average input powers P;, and the subsystem energies E averaged over some frequency
band Q. The coupling power between two subsystems is assumed to be proportional to the
difference in their modal energies, the constants of proportionality being related to the coupling
loss factors. This is the so-called assumption of coupling power proportionality (CPP). However,
SEA involves a number of assumptions and approximations, whose validity and accuracy are
usually unknown, and these restrict the applicability of SEA and the confidence that the analyst
can place in its predictions.

The original theoretical approaches to SEA were along modal lines. CPP is known to be exact
for two coupled oscillators under broadband excitation [3-5], for two coupled identical sets of
oscillators [5], and for weakly coupled, lightly damped subsystems of oscillators under broadband
excitation [6]. Extending the result to the general case of coupled multi-modal subsystems requires
various assumptions to be made [1-4]. An ensemble of systems is introduced, with coupling power
proportionality relating the ensemble average coupling powers and subsystem modal energies.
The ensemble was defined to be such that the subsystem natural frequencies were independent
random variables with a uniform probability distribution. The most important assumptions
required are that (i) the interaction between two modes in two different subsystems is unaffected
by the presence of additional modes in those subsystems and (ii) the interaction between two
subsystems is unaffected by the presence of a third subsystem. Langley [7,8] showed that under
certain conditions the dynamics of a certain broad class of system can be cast in SEA form and
that under weak coupling conditions these equations reduce to the standard SEA equations.
Finally, in Ref. [9] the modes of the system as a whole were used to determine the subsystem
energies. It was seen that an SEA-like model of the system can always be formed if there are
“enough” modes in the frequency band of interest, but that there may be non-zero indirect
coupling loss factors.

The most common method for estimating coupling loss factors involves a wave approach
[1,2,4,5,8]. Diffuse, incoherent incident wavefields are assumed, the subsystems assumed to be
reverberant and the effects of reflections in the subsystems ignored. Again, these assumptions
(particularly that of incoherence) are of unknown validity. However, these assumptions have been
removed in Refs. [10,11], in which CPP has been shown to hold for the cases of two, uniform,
coupled one-dimensional subsystems [10] and for two, coupled, simply supported rectangular
plates [11] when appropriately ensemble averaged. Furthermore, the coupling loss factors were
seen to depend on the modal overlap.

While SEA has grown to become a valuable engineering tool, there remain concerns regarding
its applicability and accuracy. In this paper many of the assumptions and approximations made in
conventional SEA theory are removed or relaxed. A modal approach is adopted, using results
from Ref. [9], and the conditions under which a proper, conventional SEA model can be formed
are investigated. Two questions are investigated. If an SEA model is formed, must indirect
coupling loss factors be included? What values should be used for the coupling loss factors, and
how do they depend on the modal overlap M? In summary, the answers are as follows. Indirect
coupling loss factors are negligible in two circumstances: if all the system modes are local or in the
limit of high modal overlap. The direct and indirect coupling loss factors are proportional to the
damping loss factor at low M, but asymptote to constants at high M.

The concept of indirect coupling loss factors has been introduced elsewhere [1,7-9,12,13].
Numerical examples were considered in Refs. [12,13], while Refs. [7,8] contain general discussions.
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The fact that at low modal overlap the coupling loss factors become proportional to the damping
loss factor has been observed elsewhere [10-12,14,15].

The remainder of this section concerns various background issues, while relevant results from
Ref. [9] are reviewed in Section 2. Sections 3—5 consider the existence of proper-SEA models and
the values of the SEA parameters for low, increasing and high modal overlap. Section 6 concerns
the case where the system comprises just 2 subsystems, while Section 7 contains some examples.

1.1. Terminology: ED and SEA models, modes and strength of coupling

In an energy distribution (ED) model the subsystem energies and input powers are related by
E= APl'na (1)

where A is a matrix of energy influence coefficients (a list of symbols is given in Appendix B). In
this paper an ED model is formed in terms of the modes of the system with few assumptions being
made. In an SEA model, on the other hand,

P, = LE, 2)

where the elements of L have the special form

Ly = w(’?j + Z ’7]‘1') » Lij = —on. 3)

i=1,N;

Here 7, and n; are damping and coupling loss factors and N; is the number of subsystems. The
matrix L must satisfy two conditions in order to be an SEA matrix. The first is conservation of
energy: the jth column of L must sum to wy;. The second is that the elements of L must satisfy the
consistency relation

nit; = ninj, 4)

where #n; is the asymptotic modal density of subsystem i. The coupling loss factors of an SEA
model might also satisfy certain desirable conditions. In particular, they should be zero if the two
subsystems are not physically connected, i.e., all indirect coupling loss factors should be zero. It is
also usual in conventional SEA that they should be positive, independent of damping and depend
only on the local system properties.

SEA involves various assumptions and approximations, and a particular system may not be
able to be modelled accurately using SEA so that the inverse X = A~! need not have the structure
of an SEA-matrix L. While X always satisfies conservation of energy, only under some
circumstances does it satisfy the consistency relation ([9], and Section 2.2).

If the necessary conditions (conservation of energy and consistency) are satisfied and also the
indirect coupling loss factors are zero, X is said here to be a “proper-SEA” matrix. The coupling
power between two subsystems is then proportional to the difference of their modal energies. If
only the necessary properties are satisfied, X is said to be a ““‘quasi-SEA”” model: the system may
still be modelled using an SEA-like approach, but indirect coupling loss factors are required to
accurately model the system’s response. This paper concerns the existence of proper-SEA models
and the parameters of proper-SEA and quasi-SEA models.
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It is worth emphasizing here that the existence of a non-zero indirect coupling loss factor #,;
does not imply that energy flows between subsystems r and i (which are not physically coupled).
Instead, it means that the coupling power P,, between two subsystems » and s which are physically
coupled depends also on the energy of the third subsystem i. Hence the SEA assumption of
coupling power proportionality does not hold. The existence of indirect coupling loss factors thus
indicates that some of the assumptions of conventional SEA breakdown.

Finally, the remaining desirable conditions may not be satisfied (e.g., the coupling loss factors
may depend on the damping or on global properties). This is more an issue regarding whether the
coupling is strong or weak.

In this paper the term system mode is used to describe a mode of the assembled system, while a
subsystem mode is one of a subsystem when uncoupled from the remainder of the structure. A
global mode is a system mode which is global in the sense that the kinetic energy of the mode is
spread out globally through the system. A local mode, however, is a system mode which is
localized within a region of the system, so that the kinetic energy tends to be contained primarily
in one subsystem and partly in its immediate neighbours (see Section 3.1.2).

The terms weak coupling and strong coupling are used in an SEA sense, although there is no
universal, commonly accepted definition of what this means as yet. In contrast, two subsystems
can be described as being strongly (or weakly) connected if energy can (or cannot) flow freely
across the interface between them. Typically, the interface has a large transmission coefficient or
there is a small impedance mismatch across it. Generally, weak and strong connections are
associated with there being predominantly local or global modes, respectively. A clear distinction
is thus made in this paper between the SEA strength of coupling and the strength of connection, a
distinction which is not normally made in the usual wave approach to SEA. That there is a
distinction will be seen in Section 3.

The modal overlap of the system as a whole is

NA
M = npd~——o, 5
Rior 0 ()

where n,, is the total (asymptotic) modal density of the system, A4 is the (average) modal
bandwidth and N is the number of modes in the band of excitation Q. The bandwidth 4 = wn,
where w and 7 are frequency and damping loss factors, respectively. Thus as the level of damping
increases so too does the modal overlap.

2. Modes, energy and SEA

This section contains a brief summary of how energy influence coefficients, and from them
coupling loss factors, can be written in terms of the modes of the system. Further details are given
in Ref. [9] and in Appendix A. The remainder of the paper concerns how these parameters depend
on the modal overlap M.

There are two necessary assumptions, namely that the system is linear and the excitations
applied to the different subsystems are uncorrelated. Two further assumptions are then made: the
excitation is ‘‘rain-on-the-roof”, defined to be random, spatially delta-correlated and with a
spectral density that is independent of frequency, but varies spatially in proportion to the local
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mass density; the damping is light and proportional. The following assumptions are also made,
primarily for convenience: all modes have equal bandwidth 4 = wn; the time-average kinetic and
potential energies are equal; the response is dominated by resonant modes. It is also assumed that
the bandwidth of excitation, 2, is large enough to contain ‘“‘enough” modes of the system, as
discussed in Section 2.2 below.

Suppose the jth mode has a natural frequency w; and a mode shape ¢,(x). Here, x and ¢; may
be one-, two- or three-dimensional vectors depending on the structure The energy mﬂuence
coefficient A4,;, which gives the total energy in subsystem r per unit power input to subsystem s, is
given by

) r)
A — E, _ 1 Z Zk ]k (S ( (6)
rs Pin,s 6017 Z Fﬂw(S) )

where the frequency integral

1

T =5 / . L w? Re{oy(@)og (w)} do (7)

depends on the natural frequencies and bandwidths of the modes in the excitation band Q. Since it
depends on the level of damping it therefore depends on the modal overlap. Here

1
(o) = 8
() (@21 +in) — 0?) ®
is the modal receptance of the jth mode.
The cross-mode participation factor
0 = [ pd 00 dx ©)

depends on the mode shapes of the jth and kth modes within subsystem r, but is independent of
the modal overlap.

2.1. Discussion and interpretation

2.1.1. Frequency integrals I j

The frequency integral I'; is a term whose magnitude depends primarily on the natural
frequencies of modes j and k& and how close are these natural frequencies. An analytical expression
for the integral is given in Appendix A. The “self-term™ I'; is always large if mode j is resonant,
i.e., if w; lies in the band of excitation Q. The *“‘cross-term™ I'j (j# k) is also large if modes j and k
are both resonant and if they overlap, i.e., they lie within each others half-power bandwidths such
that |w; — wi|< 4.

If the damping is small then, for resonant modes, the frequency limits of integration in Eq. (7)
can be extended to (0, c0) to a good approximation. For non-resonant modes I’ is negligible and
such modes can therefore be ignored. The sums in Eq. (6) are then taken only over those modes
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which lie in Q. For resonant modes then as a good approximation

1 =
Ty =Tu =g
e = T,
M? A
Jjk
.= , My = —. 10
Hik l—i-]llﬁc I |l — (10)

Here Mj; is the modal overlap of the two modes (i.e., the ratio of the bandwidth to the modal
spacing). The term py acts as a filter that determines which mode pairs contribute significantly to
the response: p is close to unity if the modes overlap, but is negligible if they do not overlap. As
the modal overlap increases (and hence the loss factor and bandwidth 4 increase), the value of I'j
for an increasing number of mode pairs becomes significant and hence more mode pairs
contribute to the sum in the numerator of Eq. (6). It is this, together with the statistics of w( ),
which causes the parameters of ED and SEA models to vary with modal overlap. ’

2.1.2. Cross-mode participation factors

The cross-mode participation factor lp(” indicates the correlation of the (j — k)th mode pair
within subsystem r. The self-term lp( glves the proportion of the kinetic energy of mode j which is
stored in subsystem r and 1ndlcates the degree to which the th mode is localized within that
subsystem. Global modes of the system are those for which lp 1s substantlal for all (or at least
many) of the subsystems, while local modes are those for Wthh w ;18 non-negligible in only one
(or a few) of the subsystems. Every mode is orthogonal over the whole system, and therefore if
there are N, subsystems

Z Yy = o (11)
s=1
The self-terms 1//(r) are necessarily positive, while the cross-terms may be negative.

Large contrlbutlons to the input power come from modes j for which the participation factor
np(s) is large [9], that is, from those modes which respond well (i.e., for which the mode shape is
large) in the excited subsystem. Mode pairs for which both x,b(s) and 1//( ) are large tend to give large
contributions to the energy in subsystem r. These are modes that are both well-excited and which
respond well. The input power depends on how many modes are excited, while the kinetic energy
depends also on how well these modes overlap.

2.2. The existence of SEA-like models

In Ref. [9] it was seen that, if all modes have equal bandwidth and the contribution of out-of-
band modes is small, the inverse X = A~! is an SEA-like matrix if the condition

¥ — By (12)

holds, where WJ(-;) is the frequency average over all the modes in the frequency band Q
and E[-] denotes the expectation, or the asymptotic average, over many modes. This expectation is
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given by
1y

E[y] = v, =

(13)

b
Niot

where v, is the fractional modal density of subsystem s, i.e., the ratio of the asymptotic modal
density ng of subsystem s to the total modal density of the system.

If the above condition holds then an SEA-like model of the system can be formed: it may be a
proper-SEA model, or it may be a quasi-SEA model and involve indirect coupling loss factors.
Furthermore, if Eq. (12) holds, it does so irrespective of the level of damping, so that if an SEA-like
model exists, it exists whatever the level of damping or modal overlap, or whether the coupling is
strong or weak, and the parameters (direct and indirect coupling loss factors) depend on the
modal overlap. This dependency, together with the existence of a proper-SEA model, will be
explored in the rest of this paper.

Henceforth, it will be assumed that the band Q is wide enough such that the modes within it
satisfy Eq. (12). The sums over j in Eq. (6) can then be replaced by their expectations, so that the
energy influence coefficients become

r) 1 (8)
A = 1 E[Zk ‘ujklp_/(‘klp;'k}

on Vs

(14)

In effect, the sum over k runs over all the modes in Q2 since it is assumed to be dominated by the
contributions from the resonant modes, and in particular from those mode pairs which overlap
(for which w; is significant).

Various other expressions will be of use. The inverse of A can be written as

A~ = oyl + oC, (15)
where C is a matrix of coupling loss factors with

CI‘S = _nsrs S?é",
Cr=> Ny (16)

S,SFET

A can also be written as
1
A=—(I-o), (17)
wn

where

B[S a0t
Oy = 51‘5‘ - ST (18)

Vs

while C can be written as

C=nlo+o®+o*+ ) (19)
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If terms of higher order than the first can be neglected then

e[ msites]
J

’/]sr = N0y = V. (20)

3. Low modal overlap

As the modal overlap tends to zero, I'j, —I';0; and cross-modal interactions become negligible.
The coupling becomes strong in the SEA sense. The energy influence coefficients and elements of
the matrix o become

[WW”}
= T
(,017 Vg
E[w(')w(s)]
Oys = v r#s,
s
(1
e[ 55
Olss = V 5 (21)
s

where the last result is found using Eq. (11). Only the ‘self” modal terms w(]) are involved. A mode
for which w(r);b(s) is large gives a large contribution to 4,,. Such a mode is both strongly excited in
subsystem s and responds well in subsystem r. The response parameters are determined solely by

the statistics of the self-term x,bj(]r), whose mean value is v,. The expectations in Eq. (21) are

E[y] = v} + o7,
EW O = vovs + oy (22)
2

where o; and p, are the variance and covariance of the modal participation factors.
The specific values of these quantities depend on the detailed statistics of the system
mode shapes.

3.1. Coupling loss factors

Since the expectations in Eq. (21) are independent of #, A is inversely proportional to #, while a
is independent of 5. Thus both A~ and the coupling loss factors in the matrix C are proportional
to the damping loss factor #. This behaviour has been observed elsewhere [12,14-17]. In general,
there will be non-zero direct and indirect coupling loss factors. These depend on the statistics of
t//(') and no simple expressions for them exist. However, limiting cases exist where all the system
modes are global and all are local, and here expressions for the coupling loss factors can be found.

3.1.1. All modes global: equipartition of energy
In the limit when all the system modes are global, then the kinetic energy for each mode is
distributed uniformly throughout the system and tﬁ —v,. Consequently ¢>—0, p,,—0 and



B.R. Mace | Journal of Sound and Vibration 279 (2005) 141-170 149

Ays— v, /(on). The modal power in the rth subsystem is given by

Z PlﬂS (23)

N

ny w’?ntot

and is thus the same for all subsystems. This corresponds to equipartition of energy. Equipartition
therefore occurs in the low damping, low modal overlap limit, but only if all the system modes are
global. In this limit the coupling loss factors become indeterminate, since A is singular.

3.1.2. All modes local: “proper-SEA”

If all the modes are entirely local, then W) is 1 or 0, depending on Whether or not the jth mode
is localized within the rth subsystem. The variances reach limits given by 62 = v, — v2; p,; = —v, vy,
A becomes diagonal, with all the power input to a subsystem being dissipated within that
subsystem, and the coupling loss factors are zero: the subsystems are uncoupled.

A local mode is now defined to be one which is substantially localized within one subsystem (for
which l// = 0(1)) together with its immediate neighbours to which it is physically connected
(for wh1ch k// = O(¢) is small). For the remaining subsystems to which s is not directly coupled
z// < O(?) is very small. If all the modes are local the elements in o become small and all higher
powers of & in Eq. (19) can be neglected so that

T nNo,

[lﬁ(r)lﬁ(s)] ViVs + Py
v — Ve

rs (24)
Thus the coupling loss factors, both direct and indirect, are proportional to # and depend on the
modal densities and mode shape covariances p,,.

Suppose that all the modes are local. If subsystems r and s are directly coupled then the
expectation in Eq. (24) is small (O(e)), and hence the coupling loss factor 1, is proportional to, but
much less than, #. However, if subsystems r and s are not directly coupled then the expectation is
very small (< O(¢?)), and the indirect coupling loss factors are negligible. Thus A~!' becomes a
proper-SEA matrix: it is possible, in principle, to apply proper-SEA in its conventional sense—all
indirect coupling loss factors are zero—but with the proviso that the direct coupling loss factors
are proportional to the damping loss factor.

3.1.3. A mixture of local and global modes

In the general case there will be some mixture of local and global modes, there may be non-zero
indirect coupling loss factors and all coupling loss factors will be proportional to the damping loss
factor. Conventional SEA predicts a response determined by equipartition of energy but the
actual response differs from this. For the directly excited and unexcited subsystems the responses

are in the ratios
( E ) [y o’
=1+-=

Eequip V2 v2’
()1 ()
E
< ) By vy ]— 1+ p”, r#s. (25)
Eequz'p ViVs ViVs
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Thus classical SEA always underpredicts the response of the driven system and usually
overpredicts the response in undriven subsystems (the covariance p,, is generally negative but may
be positive in systems with three or more subsystems). This behaviour has been observed before
using wave methods and in numerical examples (e.g. Refs. [9-14]).

4. Increasing modal overlap

Under the stated assumptions the energy influence coefficients are given by Eq. (14) with p;
defined in Eq. (10). Cross-modal terms are important for those mode pairs (j, k) which overlap.
For these uy ~1. As the damping and modal overlap increase, there are more such overlapping
pairs of modes.

Eq. (14) can be written in terms of the interaction of mode j with its mth neighbour as

()1 () () ()
1 E [l//jjr lﬁ]js } +E [Zm,m#ﬂ 'ujstrmlpjfjer jfj+m:|

rs — B

wn Vs
2
I o ‘Alj, J+m
Cim = TR
h 1+ ]uj%j+m
A M
]Wj, J+m = (26)

(Wjym — @) m’
In the last of these equations it has been noted that (®j;,, — w;) ~m/n;(w). The numerator of 4,
is the sum of two terms. The first, involving the ‘self” modal terms tﬁjj, is the M — 0 limit discussed
in Section 3. The second term comprises the expectation of cross-modal terms, which are usually
negative. If modes j and j + m overlap y; ., ~ 1, otherwise y; ;,, ~0.

In general, the situation is very complicated and little can be said about the coupling loss
factors. However, some general observations can be made. As an approximation, non-
overlapping mode pairs can be ignored, since for these y; ;,,,~0. If the modal overlap is M,
then a particular mode typically overlaps its + M neighbours, for which y; ;,,,~ 1. Thus one can
write as a simple approximation

")) M CG
A,S~LEW’7 Vi 14+ B\ vtmzo ¥ jm jfj+m] o1
wn v

As the modal overlap M increases, more terms are included in the second expectation. Since these
are predominantly negative, wnA,; (the power dissipated in subsystem r per unit power input to
subsystem s) generally decreases with increasing modal overlap (and hence increasing ) if r#s.
However, wnA, generally increases with increasing modal overlap. Thus, the dissipated powers
become proportionately larger in the excited subsystem and smaller in the indirectly excited
subsystems, as one would expect.

Both 4, and the coupling loss factors 7, depend on the detailed nature of the mode shapes, the
loss factor and the natural frequencies (through the term w;). The coupling loss factors are no
longer proportional to #, since uy also depends on 5. For low to moderate modal overlap,
relatively few terms contribute to A,, and hence larger variability might be expected.



B.R. Mace | Journal of Sound and Vibration 279 (2005) 141-170 151

Furthermore, there also tends to be some significant correlation between p; ;.,, and ¥, ;.,, for
small m, because of mode repulsion effects (the natural frequencies of two modes with strongly
correlated mode shapes tend to repel each other, while modes with close natural frequencies tend
to be weakly correlated).

Finally, if all the modes are local, the conclusions drawn in Section 3.1.2 apply here as well. In
that subsection a local mode was defined to be one which is large within only one subsystem, small
within its immediate neighbours to which it is physically connected and very small within all other
subsystems. The domlnant terms in the off-diagonal elements of A are now of two types. The first
are the self-terms lﬁ l//(” , with 7 and s being physically connected and mode j being local to one of
them. The second type arises from those mode pairs j and k for which lp )w(‘) is largest. These
involve a pair of modes which are both substantially local to either subsystem r or subsystem s. It
can be shown that lp(’)lp(‘) < O(£?) for indirectly coupled subsystems. Thus the off-diagonal
elements of A which are largest correspond to subsystems r and s which are physically connected.
When inverted (to determine the coupling loss factor matrix) the largest terms in C (the coupling
loss factor matrix) thus also relate to subsystems which are physically connected. Therefore, if all
modes are local, a proper-SEA model can be formed: indirect coupling loss factors are negligible.
However, the coupling loss factors are related to the statistics of the local modes in a complicated
manner.

5. High modal overlap

For high modal overlap very many terms contribute to the energy influence coefficient matrix
A. Eq. (26) can be re-written as

1 E |:Zm (1 lu/ /+m)w/(r)/+mw/(5)j+m

Ars - - (28)
wn Vs

This follows by noting that [18]
Z lp Hmlp“;m =0, r#s. (29)

m
Eq. (29) follows from modal incoherence. One interpretation of the result follows from the
observation that, as #, M — oo, the response becomes more and more localized around the
excitation point and decreases ever more rapidly away from the excited region. As a consequence,
A,s (r#s) decreases as the modal overlap increases, as one would expect: for large damping the
response becomes significant only in the directly excited subsystem. If one again uses the
approximation y; ;. ~ 1 for overlapping mode pairs then

(s)
1 -EX MM '// i+ ;i j+
Ay~ mmé¢(— ) T, jrmY ), j+m s (30)
wn Vs

where the sum now runs over all modes except those that overlap.

Thus as the modal overlap increases, A4,; (r#s) becomes smaller compared to the diagonal
terms, and the elements of the matrix o in Eq. (17) become smaller. Thus only the first terms in the
expansion for C need be retained, so that Cxna, and therefore 5, = —Cryx — ot = WR> A,y
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Noting that vy = ny/n,, and M = wnn,,, it follows that

Q) ()
Z l//j,j-ﬁ—m j,j+m] > : (3 1)

wngl .~ M (E
mme (—M,M)

This is defined here to be the weak coupling/high modal overlap limit. The coupling loss factors in
Eq. (31) depend on the modal overlap explicitly through the factor M and implicitly through the
expectation of the sum.

5.1. Asymptotic dependence of the coupling loss factors: proper SEA

This section concerns the asymptotic behaviour of the coupling loss factors of Eq. (31) in the
high modal overlap limit. Strictly the discussion applies to wave-bearing subsystems. It is seen that
the indirect coupling loss factors asymptote to zero, so that a proper-SEA model can be formed,
while the direct coupling loss factors asymptote to constants.

By definition

W = / PG X)B () dx, (32)

where x is the position vector in subsystem r and the integral is to be evaluated over
subsystem r. Now the jth mass-normalized mode shape typically varies in subsystem r
as +/ p(x)¢j(x)~cos(k](.")‘x), where k;r) is the wavenumber vector. Thus the integrand in
Eq. (32) involves the term

POV (X) (%)~ cos(kf” - x) cos(k’,, - x) = 4 (cos((K(},, — k) - x) + cos((k;?,, + k) - x). (33)

The terms on the right hand side are highly oscillatory unless the wavenumber vectors k;") and
k](.':gm have a similar direction. In this case the first term is oscillatory, but not highly oscillatory.

When integrated over subsystem r, the orders of magnitudes of the two terms on the right hand
side of Eq. (33) are O((k"") — k](."))_l) and O((k\”, + k](.’))_l), respectively, so that the first term is

) j+m J4+m
dominant. Now

(@jpm — a)j)~ m

SN SUES - (34)
s ’ Cg) ntotcg )
where cff) is the group velocity. Hence it follows that
lpj(':r}ﬂn = 0(m_1)' (35)

Thus both np](’} m and lp]“} +m 10 Eq. (31) are O(m™"), so that their product is O(m~?). However,

integrating Eq. (33) gives sinusoidal terms, so that the signs of wf')/ ., and l//f‘i > and the sign of
their product, may be positive or negative. Noting that

<] 1 1
—=PY(M+1)= + + -
MZ:]W ( ) (M+1) 2(M+1)Y
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where Y(M) is the Digamma function, it follows that

S < DT W = o, (37)

myme (—M,M) mmée (—M,M)
From Eq. (31) it therefore follows that
wngn, < O(MP). (38)

This indicates that, in the high modal overlap limit the coupling loss factors all tend to constants
as the modal overlap increases, but the constants may be zero.

Consider now two subsystems which are not directly coupled. The terms in the sum and
expectation in Eq. (31) are the products of zp“) and lp“ which are found by integrating

, j+m , J+m>
CH (33), and each of which may be positive or negatlve The dominant term in the product
mW (&} m Will be of the form
sin((k('),, — k) - x,) sin((k{,, — k) - x,) (39)

and is evaluated at the boundary locations X, and x; of subsystems r and s. Since these positions
are distant from each other, the two sinusoidal terms are uncorrelated and their product will be
positive or negative. Hence it might be expected that the sum and expectation in Eq. (31) would
tend to zero, so that the indirect coupling loss factors are such that wngy,, < O(M?). Thus the
indirect coupling loss factors tend to zero in the weak coupling, high modal overlap limit. This
results from the fact that the mode shapes at two different, distant points in a structure are
uncorrelated.

However, for two subsystems which are directly coupled, some of the terms like Eq. (39) will
involve points lying on the coupling between subsystems r and s. For these x, = X;, so that while
the individual sinusoidal terms may be positive or negative, they have the same sign, so that their
product is always positive—the mode shapes in the rth and sth subsystems at their common
boundary are correlated. Thus, the sum and expectation of these positive terms is a positive
constant, so that the direct coupling loss factors wngn, = O(M"), and therefore asymptote to
positive constants, independent of modal overlap.

In summary, as the modal overlap increases, the indirect coupling loss factors tend to zero,
while the direct coupling loss factors tend to positive constants. Therefore the behaviour of the
system can be described by a proper-SEA model. This behaviour occurs because of mode shape
correlation at the boundary between directly coupled subsystems. While the discussion above was
developed for wave-bearing subsystems, the conclusions regarding the correlation of mode shapes
between directly and indirectly coupled subsystems would be expected to apply in more general
circumstances.

6. System comprising two subsystems

Consider the special case of a system comprising just two subsystems. Clearly, all modes
are local in the sense defined earlier and there can be no indirect coupling loss factors, so a
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proper-SEA model can always be formed if the bandwidth of excitation is large enough. The

cross-mode participation factors are such that w;,? + l//ﬁ) = Jjk, while vi + v, = 1.

6.1. Low modal overlap

The variances and covariances in Eq. (22) are now such that

0<a<vv). (40)
The limits on 62 correspond, respectively, to the cases of all modes being global and all being
local. The coupling loss factor becomes

viva(vivy — a?)

on,, =M (41)

o2

Proper-SEA can be applied (as long as there are enough modes in the band), but the coupling loss
factors depend on the mode shape statistics through the means and the variance and are
proportional to the damping loss factor.

6.2. Higher modal overlap

At higher modal overlap cross-mode shape statistics become important. Since np(.z). = —1//(1) m
: : R0 2 _ 2 _nm
it follows that the covariances p,,, of y; ., W7, are related by o7, ,, = 62,,, = —P12n = - A
can be written as
4@ +S) viva— (a2 +9)
1 Vi 1%}
A=— 2 2 2 ’
onlviva—(a*+S) v;+ (@ +5S)
Vi %)
1 2
s=E| 3 wpmtil] @)
m,m#~0
with the sum § increasing from zero as the modal overlap increases. Consequently,
vy, — (6% + S5))
wnin, = M . (43)

(c2+95)

(1

For large modal overlap S~v{v, — o> — E D m ¢(—mn¥;, j+m] and hence in the weak coupling

limit the coupling loss factor is

2
wmmz~ME[ > },‘}m]. (44)

mme (—M,M)
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7. Examples
7.1. Uniform rod

Consider the system comprising a single, uniform rod undergoing axial vibration as
shown in Fig. 1. The rod lies along the x-axis, is of length L and the ends are fixed. It is
divided into an arbitrary number of subsystems, with the rth subsystem being the region from x,_,
to x;. This is of course a somewhat artificial example: one would not choose to model this system
using SEA, and large modal overlap corresponds to large wave decay rates because the system is
one dimensional. However, it is the simplest of examples to illustrate the foregoing text:
ganalytical expressions for the mode shapes exist, the modal density is constant and the system is

non-dispersive.
N
W=\ 7 o)

For the jth mode
2 . jmx
B0 = [ s (45)

where E, p and A are the eclastic modulus, density and cross-sectional area. The modal
density is
L

M) == /2. (46)
The natural frequencies are uniformly spaced in frequency. All the directly coupled
subsystems are strongly connected, since the power transmission coefficient 1 =1 for all the
couplings.

For the rth subsystem

'/ljzr ) = (L — Xr_1> ! <sin2j T Siannxr_1> ,

L " 2jn L L
» L1 (Sinmnxr i mnxr,l)
FIEm T m m L S L
1 2j . (2f r_
—— i 1( J sm( J & M . 47)
2 +m) L L
subsystem s subsystem r
/] 2
/] “
/ '’ 'y
/ xx—l xs xr-l xr /

Fig. 1. System comprising a single rod.
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The frequency average and expected values of the modal energy participation factor lp](.l’f) are, for
large enough j or for a wide enough band,
(xr - erl) _

vy = By = = =

All modes are global, since lp](.j’) ~v, for all j. For higher values of j (and small or moderate m2) only
the first terms in Eq. (47) become important, since 2j is typically large. Furthermore, the second
terms are highly oscillatory with increasing j and m. Retaining only the first terms gives

(48)

" < xr—l)
v ().
1 /. mnx, . MTX,_q
‘p/(’);+m~ n(sm 7 sin— ) (49)

Suppose x,<x,_1 (i.e. subsystem s lies to the left of subsystem r). Using the approximations of

Eq. (49), the term lp(’} +mlp i ji+m can be written as

. 1 1 7 — Ay
Uyl em =5 2 22 [ cos <w>
mm(x, — X;) MI(X,_1 — Xg_1) mm(x, — Xs_1)
 (cos (ML) o (M) - oos (M) )
mN(x, 1+xs) mm(x, + X) ma(x,_1 + X5_1)
(oM - oon (ML) o (L)

+ cos (w) > ] . (50)

2

The product thus decreases as m~ <, as was inferred for the general case in Section 5.1. The terms in
brackets have been divided into three groups. The first comprises the single term involving (x,_; —
xs), and will equal —1 if subsystems r and s are directly coupled (i.e., if x; = x,_1), otherwise it will
be oscillatory as m increases. The second group comprises three terms involving co-ordinate
differences: these are oscillatory as m increases, but may be slowly oscillatory if subsystems r and s
are close. The third group involves four oscillatory terms involving co-ordinate sums which are
generally highly oscillatory. Thus if subsystems r and s are directly coupled

1 1
lﬁ(r;erlﬁ(bﬁm =353 + oscillatory terms (51)

while if they are not coupled, all the terms are oscillatory.
For this case wj;, — w; = m/n,y exactly. Thus in Eq. (26) we can write

1

= 2
'ujy./+m 1 4 (mz/MZ) (5 )

At low modal overlap, M « 1, only the terms np](.}') are relevant and equipartition of energy
occurs because the modes of the system are global. As the modal overlap increases, the
interactions of neighbouring modes start to become important. Each of these interactions gives a
contribution of the form ; ; +m1p lﬁ( i i+m (EQ. (26)) where y; ;. , is only significant if the modes
overlap.

,Jj+m
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For low-to-moderate M, a few terms in Eq. (26) become significant, typically only those for
which |[m|< M. The leading terms (the first group in Eq. (50)) are negative, so the off-diagonal
energy influence coefficients A4, tend to decrease. If M ~1 then A4,; will depend strongly on the
subsystem co-ordinates Xx.

For moderate-to-high M, the energy influence coefficients can be written as (Eq. (28))

1 E [Zm (1 - i j+m) /(Zerlp/(sier
Ay = —— )
wn Vs

(53)

If subsy_stems r and s are not coupled zpf’)/ +mt//f’)/ .» only involves oscillatory terms apd the
expectation and sum tend to zero. However, if they are coupled, 4,; can be evaluated using the

expressions in Eqgs. (51) and (52). Reversing the order of summation and expectation, and

assuming that the expectation of the oscillatory terms in wf’)/ +mx/fl(s)/ +m 18 zero, it follows that
1 1 1 1
Ay = — 1 — -
»T T o Zm:( I+ (mZ/M2>> < n? 2n2>
I 1 1 1
= —_ 54
wnvs 22 M? ; 1 + (m?/M?) (54)

Now > 1/(1 + (m*/M?)) = nM coth(nM) and hence, if the modal overlap and the centre
frequency (or mode number j) are high enough then, for coupled subsystems,

11
onv2n M’

(55)

rs

As the modal overlap increases, the off-diagonal elements A4, (r#s) becomes smaller compared to
the diagonal terms. The matrix A thus consists of relatively large diagonal entries, relatively small
entries on the super- and sub-diagonals (i.e., relating coupled subsystems) and zeros elsewhere.
The indirect coupling loss factors thus tend to zero. Only the first terms in the expansion for C in
Eq. (17) need be retained and therefore n,, ~ wn*4,s. The direct coupling loss factor is therefore
given by

1

OMGH g = 5. (56)

This is the same value as the conventional wave estimate of the coupling loss factor given by
Ny = t/2nngw [2], since the power transmission coefficient © = 1.

This behaviour can be interpreted in terms of the correlation of the cross-modal interactions. If
two subsystems are not directly coupled, the system mode shapes in the two subsystems are, on
average, uncorrelated—hence the oscillatory terms in Eq. (50). The average interaction thus tends
to zero as an increasing number of mode pairs interact (i.e., as the modal overlap increases).
However, if the subsystems are directly coupled so that x; = x,_; then the mode shapes are
uncorrelated within the interiors of the subsystems, but not at the junction between them—the first
term in Eq. (50) now becomes 1/2m?n?, is not oscillatory and does not average to zero.
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Fig. 2. Systems comprising two coupled rectangular (RR) or pentagonal (PP) plates.
7.2. Two coupled plates

A system comprising two coupled plates has been used as an example in many previous studies.
There are just two subsystems, as described in Section 6, and hence there can be no indirect
coupling loss factors. In a conventional SEA model the asymptotic modal density and the

coupling loss factor are given by
A [ph
n(w) - ﬁ 37

Lk {t12)

~ 2nan, (w) 57)

M2

where 4 and D are the plate thickness and bending stiffness and L is the length of the coupled side.
A slightly different expression for the modal density can be used which involves corrections for the
perimeter and number of corners [2,18].
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Here, two different 2-plate systems, taken from Ref. [14], will be considered. In Ref. [14] FE
studies were conducted on systems comprising two plates of various shapes, coupled along one
edge, and with all edges, and the line of coupling, being simply supported. The length of the
coupled edge, the plate areas and all other plate properties were held constant, the aim being to
investigate the importance of irregularity in the shape of the plates on the response. More details,
including system properties, can be found in Ref. [14]. Results are shown here for two coupled
rectangular plates (the “RR” system) and for two coupled pentagonal plates (PP) as shown in
Fig. 2. The RR system is regular, and an analytical expression exists for the ensemble averaged
coupling loss factor [11]. The PP system is irregular. Conventional SEA treats these systems in the
same way. However, their mode shapes, and the mode shape statistics, are different, and this leads
to different behaviour, especially at low and moderate modal overlap.

7.2.1. Low modal overlap: statistics of w( )

At low modal overlap only the self- terms lﬁ( ) are relevant. Fig. 3 shows w(l) =1- lp](.jz) as a
function of the natural frequency f, for the ﬁrst 120 modes. There is a clear tendency for the
modes of the RR system to be more localised in one or other of the plates, with wj(-jl) tending to be
closer to 0 or 1. The statistics of the mode participation factors are somewhat non-stationary with
frequency, especially for the lower modes. Averaging over 100 modes from the 21st gives the

statistics shown in Table 1. The frequency average npj‘./’f) is very close to the fractional modal density

v for both RR and PP systems. However, the variance for the RR system is by far the larger. For
low modal overlap the coupling loss factor of Eq. (41) is proportional to the modal overlap and is
substantially larger for the PP system, which has the smaller variance (Table 1).

+ + o4 + + + +
+ +4 ++ + + +
L + 4+ + 1
08 + g - 4
+ +
I
— 0.6 + O+ + + + + 7
90_4_..._____*_4“.1. + [ AU N S S
+ o+ + .
. o + +F 4 + v * +
+ S 1 * +  +
+ +
(a) P S L et x+;4"* SRS UL S AP
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+ o+ o+
+ + + *
- + + + + + + + + +
0.8 + + + + 7
+ + + +
+ +
0.6+ + . + + o + ot b,
:B:-:l' + o + + +4 *
+ +
0.4 -+ + T +y- L‘h _— T —_—
+ + + + + T+
+ ++ + + ++ + + 4 + + + +
0.2 Lt + * + o+ + —~
i + + 47 R S S ++ F . . +
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(b) f, (Hz)

Fig. 3. Self terms zﬁ(') for (a) RR and (b) PP plate systems and (____) l//(l).
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Table 1
Mode shape statistics for the “self”’-terms of the 2-plate systems
RR PP
v 0.417 0.417
l//(1) 0.412 0.410
o2 0.143 0.0583
onin, at low M 0.169 M 0.771 M
10° . . . . r T . . .
. ' - . f o - .
«* . . ot -t o2 : o]
. - ; .-".
.. A ’. TR Rk oo o
10°¢L i“-}' ’-f‘."l ": P} ; e 1 N
0 100 700 800 900 1000
() If, - £ (Hz)
100 T T T T T T T T T

(b) If, - fj| (Hz)

Fig. 4. Cross-mode terms l//;/l)2 as a function of natural frequency spacing for (a) RR and (b) PP plate systems.

7.2.2. Higher modal overla €7 statistics of w( )

Fig. 4 shows zp“) as a function of the natural frequency spacing of modes j and k.
Increasing modal overlap means that more mode pairs are included in the sum S in Eqs. (42) and
(43). The values of tﬁ & appear more random-like for the PP system than for the RR system, for
which some clear structure is observable. While there appear to be fewer modes for the RR
system, this is an illusion, since many mode pairs are so weakly correlated that lp( " is very small
(in theory they have zero correlation, but in FE studles this is not necessarily the case). Also, for a
large difference in the natural frequencies, w can be substantially larger for the RR system.
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Fig. 5. Cross-mode terms np](.
1
(—) E ),

These features are due to the fact that, for the RR system, there are a discrete number of half-
wavelengths across the plates for each mode shape. Two modes with different numbers of half-
wavelengths are spatially uncorrelated: two modes with the same number of half-wavelengths are
well correlated, but tend to have natural frequencies which are well separated.

For higher natural frequency spacing wf}j tends to decrease as | f; — ﬁ|2, as expected from the
discussion in Section 5.1. This is perhaps more evident in Fig. 5, where the dependence on mode
number difference is shown. This last figure also shows the average E[np](.}} +m] as a function of m.
7.2.3. Higher modal overlap: coupling loss factors

Fig. 6 shows the coupling loss factors, normalized with respect to the conventional wave
estimate of Eq. (57), as a function of modal overlap. They are found from the energy influence
coefficients given by the exact expression (Eq.(6)) and the approximation of Eq.(14) for a
frequency band centred at 1 kHz and containing about 27 modes. The low M asymptotes of
Egs. (41) are also shown. There are clear differences between the RR and PP systems at low and
moderate M, but the high M asymptotes are very similar. The behaviour is similar for different
excitation frequency bands. Differences between the various predictions can be attributed to the
effects of out-of-band and off-resonant modes and the fact that the actual excitation only covers a
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Fig. 6. Coupling loss factor (normalized with respect to conventional estimate of Eq. (67)) as a function of M: (—) PP

and RR plate systems; (
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Fig. 7. System comprising 4 coupled rods.

ANNNNNN

finite frequency band. Furthermore, the simple expressions for the asymptotic modal densities
(Eq. (57)) have been used, with no perimeter or corner corrections.

7.3. Four coupled rods

As a final example consider the system comprising 4 rods shown in Fig. 7 undergoing axial
vibration. This system can have non-zero indirect coupling loss factors. The properties of the
system and the coupling loss factors can be found in Ref. [9]. Here numerical examples of

J J

lp(f} +m¢(ff}. +m are presented for 51 modes centred on the 50th natural frequency (i.e., 25</<75),

with subsystem s = 4 being excited. Interactions with up to 24 nearest neighbours are found (i.e.,

—24<m<24).
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Fig. 8. The terms w;r)/ +m1//;4; +m for 51 modes centred at the 50th mode of the 4-rod system and (—) the average
E[y),,i%.,] for these modes: (a) r =4; (b) r = 3; () r =2 (d) r = 1.

F1 8 shows np(” xp(4j) .m for all 51 modes in the excitation band. Also shown are the averages

[lp X +m¢(4j) ol taken over these modes. Fig. 9 shows the cumulative sums )", np(’z +mnp(4j) ml @S
functions of |m|. In broad terms, it is these cumulative sums that determme how the energy
influence coefficients, and hence the coupling loss factors, vary with increasing modal overlap,

since Eq. (27) can equally be written as

R+ S0 s B
on Vg '

(58)

A rs ™
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Fig. 9. The cumulative sums >." E[l//](-f%m j(-?;m] as functions of |m| for the 4-rod system: (- - + --)r=4; (- + -)
r=3(—+ —)r=2(--+ --)r=1. Also shown (— — — —) are lines of slope m~! and m2.

The self-terms np(.f'>.lp(.f‘). in Fig. 8 are necessarily positive and so too are all cross-terms
‘Pﬁ;m ,(-,4])-+m for the excited subsystem (Fig. 8(a)). The individual terms and the averages generally
decrease with increasing |m|. For r#s and m##0 the individual terms and the averages may be
negative. For |m| = 1 the terms for the indirectly coupled subsystems are negative (Figs. 8(c) and
(d)), with the relative magnitude of the negative terms compared to the m = 0 terms being larger
for the more distant subsystem (Fig. 8(d)). The cumulative sum can then be expected to decrease
somewhat quicker in this case. These features can be explained in terms of typical mode shapes,
which involve sinusoidal displacements in the rods. For larger mode difference |m| the subsystem
participation factor l//l(r ), +m tends to decrease because the difference between the wavenumbers
associated with the two modes becomes larger, while for subsystems which are more distantly
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§epara§ed (e.g., r = 1 rather than r = 2) the product lp](’j m ](4]) m
increasing m.

The cumulative sums are shown in Fig. 9 as functions of |m|. For the excited system every term
E[w}f} Hnlpj(.f‘]’. +ml 18 positive and the sum asy.mptotes to a constant equal to the fractiongl modal
density of subs4ystem 4. For the immediate neighbour, subsystem 3, the cumulative sum
> E[lp]“]) Tmlp](.’ ]) +m] decreases with increa.sing'|m|, but generally decreases as m ™! because Qf
the correlation of the mode shapes at the junction between subsystems 4 and 3, as discussed in
Section 5.1. The coupling loss factor thus asymptotes to a constant. For the indirectly coupled
subsysterns (2and 1) Z'fm E[npf}.ﬂm ;4]) +m] decreases more rapidly thgn m~!, as expected, because
there is no such correlation of mode shapes. In general, the cumulative sums seem to decrease as
m~2, which might be expected: if the signs of successive terms in the cumulative sum are different,
then the sum (see Eq.(36)) would be of terms like (—1)"/m?. The sum of such terms is
Mo (=1)"/m?* = O(m™?). Thus with increasing modal overlap the cumulative sum
ZT’?’ E[lﬁj(’z m ](4; er] for the indirectly coupled subsystems decreases rapidly enough such that
the indirect coupling loss factors tend to zero.

tends to be more oscillatory with

8. Concluding remarks

This paper concerned the existence of “proper-SEA” and “quasi-SEA’” models, the dependence
of the direct and indirect coupling loss factors on modal overlap and the conditions under which
the indirect coupling loss factors in an SEA model are zero. The results of Ref. [9] were used to
express the matrix A of energy influence coefficients in terms of the modes of the system. It was
assumed that the system is linear and that the excitations applied to the different subsystems are
uncorrelated. The excitation is ‘“‘rain-on-the-roof”, defined to be random, spatially delta-
correlated and with a spectral density that is independent of frequency, but varies spatially in
proportion to the local mass density. The damping is proportional, with all modes having the
same bandwidth 4 = wy. Finally the time-average kinetic and potential energies are assumed
equal. In Ref. [9] it was seen that if the bandwidth of the excitation is wide enough so that the
modes within it satisfy Eq. (12) then the inverse A~! is an SEA-like matrix L, which thus satisfies
the necessary conditions given in Section 1.1. In particular, the coupling loss factors satisfy the
consistency relation, Eq. (4). In general, however, L is a quasi-SEA matrix with there being non-
zero indirect coupling loss factors.

The conditions under which L becomes a proper-SEA matrix (i.e., one for which all indirect
coupling loss factors are zero) were then investigated, together with the dependence of the
coupling loss factors on the modal properties of the system and the modal overlap. These
parameters depend on the frequency integrals 'y and the cross-mode participation factors w},’?.

In summary, all the indirect coupling loss factors are zero either if all the system modes are
local, or in the limit of high modal overlap. For low modal overlap only the statistics of the “self”
terms r,bj(-j'-’) are important. The coupling loss factors are proportional to the damping loss factor.
Furthermore, equipartition only occurs if all the modes are global. As the modal overlap increases
so an increasing number of mode-pairs overlap, interact and contribute to the energy distribution
within the system, and hence to the coupling loss factors. Typically, a mode overlaps and interacts
with its + M neighbours. The general situation is complicated and depends on the statistics of the
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natural frequencies (on which the frequency integrals 'y (or uy) depend) and the cross-mode
participation factors lpj(.,? (which depend only on the mode shapes). In the high M limit the
coupling loss factors asymptote to constants, with indirect coupling loss factors becoming zero.
This is due to the correlation of mode shapes at shared boundaries, and the lack of correlation of
mode shapes at two points which are distant from each other. The discussion for high modal
overlap strictly concerned wave-bearing subsystems, for which the mode shapes have a spatially
harmonic form, although the conclusions might be expected to apply in more general
circumstances.

These conclusions have similarities with some previous work. The definition of local system
modes in this paper can be interpreted in terms of light coupling of sets of oscillators, for which
the subsystem modes and mode shapes are only slightly perturbed when the subsystems are
coupled (e.g., Ref. [6], and the ad hoc assumptions of [1-4]). Here, however, modes of the whole
system are used to describe the response. In Refs. [7,8] the system’s behaviour was described in
terms of Green functions. The system equations were seen to be in SEA form if an appropriate
definition of energy was adopted—this is analogous to the treatment here where energy is used as
the response variable (strictly, twice the kinetic energy) but the equations are only of SEA form if
the modes in the excitation bandwidth satisfy Eq. (12). Finally in Ref. [8] the indirect coupling loss
factors were seen to be negligible if the differences between the Green functions of the uncoupled
and coupled systems were sufficiently small—in the terminology of this paper, this implies all
modes are local.

The paper concerned broad-band frequency averages for a single system. In SEA, one should
really consider (discrete frequency) ensemble averages, although one can expect the conclusions
drawn here to be similar for the ensemble average behaviour, with the expectation in Eq. (12) now
being found over the ensemble instead of over a broad frequency band. However, this raises the
problem of how the ensemble is to be defined, both in analytical studies and in practical
applications. This is by no means clear, particularly for two-dimensional systems where shape
(geometric irregularity) is an issue. For example, it was seen that at low and moderate modal
overlap two coupled rectangular plates behave in a quite different manner to two, coupled
pentagonal plates because their modal statistics are quite different. In terms of the system modes,
the ensemble definition should include natural frequency statistics (especially asymptotic modal
density and spacing statistics) and mode shape statistics (both the self-terms of Eq. (12) and the
cross terms npg,?) and their correlations—potentially a formidable task.

For real systems it may well be that Eq. (12) holds only for unrealistically wide frequency
bands: for example if the modal density or the damping loss factor is significantly frequency
dependent then that condition might never be satisfied. The response of a single realization of the
system would then vary about the mean levels predicted by the ensemble (or broadband
frequency) average. Furthermore, the system mode shapes might be such that the convergence to
proper-SEA behaviour for large M might be slow (e.g., for nearly periodic structures). Again, the
results here provide the mean about which the finite frequency band response of single realizations
of a system vary. In addition, the discussion (particularly that concerning the asymptotic
behaviour at high M) assumed that the contribution of out-of-band modes was small, which may
well not be the case for the band average response of a single system, especially at high M.

It was also assumed that the modes had equal bandwidths. This is not strictly necessary, since
averages and expectations can also be taken over modal bandwidths. Also in practice the different
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subsystems will usually have different damping levels, so that the results herein should be
rephrased using complex system modes—it is not believed that this would substantially affect the
conclusions however. Alternatively, the bandwidth for each mode could be chosen to accurately
reflect the dissipation of energy, depending on the participation of each subsystem through the
terms :p]g.’) .

In conclusion it is acknowledged that practical situations to which SEA is applied are such that
the system modes will rarely be known, or even able to be computed. However, the modes do exist
so that the conclusions reached in this paper can be applied. Furthermore, the approach offers a
general framework for the analysis, a means of estimating the SEA parameters and a basis for
quantifying variability etc. in SEA predictions.

Appendix A. Modes and energy

A time harmonic point force of amplitude F acts at a point x = x;. The amplitude of the
response at point X is given in terms of the system modes by

W(,x1,%2) = Y (@), (x1),(x2)F, (A1)

J

where ¢,(x) is the mode shape of the jth system mode and where
1
(14 i) — @?

aj(w) = (A2)
is the modal receptance, w; being the jth natural frequency. The modes are assumed to be mass
normalised so that when integrated over the whole system

/ PX) b ()1 (%) dx = 3. (A3)

The amplitude of the velocity is iw W, so that the time average kinetic energy density at x, and
the input power are

Dr(w,X1,%:) = S Re{l p(x2)a® WW*},
P, = %Re{in(a),xl,xl)F*}, (A4)

where % denotes the complex conjugate and where p(x) is the mass density.

“Rain on the roof” excitation is now assumed to act over the excited subsystem s and over a
frequency band Q. “Rain” is defined as spatially delta-correlated, random excitation with a
spectral density proportional to the local mass density p(x). In a frequency band déw the
contribution to the mean-square force is /2 = Syp(x)dw, where Sy is the power spectral density
(per unit mass density). While this may be a function of frequency, here it is assumed to be
constant for convenience. The total kinetic energy in the responding subsystem r and the input
power are then found by integrating equations (A4) over all points x; in r, all points X, in s and all
frequencies w in Q. The time and frequency average kinetic energy in subsystem r

T =28 3" > Ly (A.5)

J k
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is thus a sum over cross-modal pairs, while the input power

Py =28 > " 24Ty (A.6)
j
is a sum of modal contributions. The terms I and lp](.,’;) are defined in Egs. (A.7) and (9),
respectively. If the time average kinetic and potential energies are assumed equal, then the total
energy is twice the kinetic energy. Finally, if it is assumed that all modes have equal bandwidth,
then 4; = 4 = wn.
The integral of ' over the frequency range from w; to w, is given by

20 (zj —2f) (w102 — z))

1 Q. /—z v/~ Zk Q./—:z
Ty = mRe {7] arctan ( ! ) —|—( “_arctan <7k> }, (A.7)

(zk — z)) (w102 — z)) Zj — Zk) (w1002 — zk)

where
= oj(l—in; z=wp(l +in) (A8)

and where Q = w;y — w;.
Appendix B. Nomenclature
A A energy influence coefficient, Eq. (1); area
¢y group velocity
C coupling loss factor matrix, Eq. (15)
D plate bending stiffness
E . E subsystem energy; elastic modulus
E[] expectation operator
h thickness
k wavenumber
L damping and coupling loss factor matrix, Egs. (2) and (3)
L length
m integer, difference in mode number
M modal overlap
M, overlap of modes j and k, Eq. (10)
n asymptotic modal density
Hior total asymptotic modal density of the system
N number of modes in band
N; number of subsystems
P;,, P, input power
S sum, Eq. (42)
X, X position
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oL, Oly matrix, Egs. (17) and (18)

o modal receptance of mode j, Eq. (8)
A modal half-power bandwidth
n damping loss factor
Nij> Mrs coupling loss factor
; mass normalised mode shape of jth mode
Ty frequency integral of modes j and &, Eq. (7)
np},? cross mode participation factor of modes j and k in subsystem r, Eq. (9)
P density
Prs covariance of mode participation factor in subsystems r and s
i Eq. (10)
v fractional modal density, n/n,,
o2 variance of mode participation factor
w frequency
on natural frequency of jth mode
Q frequency band of excitation
Subscripts
i,j,r,s subsystem number
Tk mode number
tot total for system
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